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Quantum computing: What’s the point?

Computations using quantum bits (performed in a highly specific way) can provide computational speedups (for certain problems)

Quantum computers fundamentally changes what is computationally feasible
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Electrical circuits fabricated using superconducting materials and patterned with nano- and microlithography techniques:

Figure from MK et al, arXiv:2001.08838

Original design from R. Barends et al, Nature, 500, 508 (2014)


• Quantum properties can be changed, just by changing electrical pattern

• Exceedingly reproducible -> can be prototyped and optimized very quickly
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Google Quantum AI

Superconducting quantum computing: What do they look like?

3

FIG. 2. Seven-qubit device. (a) False colored micrograph of the seven-qubit device used in this work. Transmon qubits are
shown in yellow, coupling resonators in cyan, flux lines for single-qubit tuning and two-qubit gates in green, charge lines for
single-qubit drive in pink, the two feedlines for readout in purple, transmission line resonators for readout in red and Purcell
filters for each qubit in blue. (b) Enlarged view of the center qubit (A2) which connects to four neighboring qubits.

pler element crosses the ground plane with an airbridge
(white). We install the device in a cryogenic measure-
ment setup [42], see Appendix D, and we characterize and
benchmark the device using time-domain and randomized
benchmarking methods as detailed in Appendix B.

RESULTS

Changes in the outcome of repeated stabilizer measure-
ments, also referred to as syndromes, signal the occurrence
of an error. It is, thus, critical to directly verify the ability
to measure the multi-qubit stabilizers using the ancilla
readout [43]. We characterize the performance of the
stabilizer measurements by preparing the data qubits in
each of the computational basis states and measure the Z-
stabilizers, see Fig. 3. For each stabilizer, the other ancilla
qubits and unused data qubits are left in the ground state.
We correctly assign the ancilla measurement outcome
corresponding to the prepared basis state with success
probabilities of 95.0%, 83.5% and 91.8% for the stabilizers
ZD1ZD3, ZD1ZD2ZD3ZD4 and ZD2ZD4 calculated as the
overlap between the measured probabilities and the ideal
case (gray wireframe in Fig. 3). Master equation simu-
lations, which include decoherence and readout errors,
are shown by the red wireframes in Fig. 3. The parity
measurements are mainly limited by the relaxation of
the data qubits, which directly leads to worse results for
states with multiple excitations such as the |1111i-state
when measuring ZD1ZD2ZD3ZD4. Further variations in
the correct parity assignment probability arise due to the
di↵erences in qubit lifetimes and two-qubit gate durations
(see Appendix B).

In a next step, we prepare logical states by projecting
the data qubits onto the desired code space. We use a
probabilistic encoding scheme, where we initialize the

data qubits in a given product state and perform one
cycle of stabilizer measurements. Then, in the events
where all syndrome results are |0i, the data qubits are
projected onto the desired logical state. We can use
this probabilistic scheme to prepare any logical state by
initializing the state |0i (a |0i+ b |1i) |0i (a |0i+ be

i� |1i),
which will be projected onto the (unnormalized) logical
state | iL = a

2 |0iL + b
2
e
i� |1iL. Here, we specifically

initialize the logical states |0iL, |1iL, |+iL and |�iL by
performing one cycle of stabilizer measurements on the
states |0000i, |0101i, |0+0+i and |0+0�i, respectively,
with |±i = (|0i± |1i)/

p
2.

First, we consider the preparation of |0iL for which
the data qubit state |0000i after one cycle of stabi-
lizer measurements is projected onto the state | 0i =

FIG. 3. Stabilizer measurements of the data qubits. In (a) we
show the outcomes of the measurement of ZD1ZD3 using an-
cilla A=A1, in (b) of ZD1ZD2ZD3ZD4 using ancilla A=A2 and
in (c) of ZD2ZD4 using ancilla A=A3. For all panels we show
the ideal outcome in the gray wireframe and the corresponding
master equation simulations in the red wireframe.
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Late last year a superconducting quantum computer outperformed the worlds largest classical supercomputer:

Using 53 superconducting qubit (of the transmon variety), the Google Quantum AI team demonstrated a calculation in ~200s that is expected 
to take between ~a few weeks and up to ~10.000 years on the Summit supercomputer

Google Quantum AI, Nature, 505, 574, (2019)
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking 
methods. FXEB values for patch, elided and full verification circuits are 
calculated from measured bitstrings and the corresponding probabilities 
predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
includes both systematic and statistical uncertainties. The corresponding full 
circuit data, not simulated but archived, is expected to show similarly 
statistically significant fidelity. For m = 20, obtaining a million samples on the 
quantum processor takes 200 seconds, whereas an equal-fidelity classical 
sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 
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Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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Transmon qubit:
a capacitively shunted
Cooper-pair box that
is largely insensitive to
charge, resulting in
improved
reproducibility and
coherence times

1. INTRODUCTION
The ability to control individual quantum degrees of freedom and their interactions unlocks the
capability to perform quantum coherent computation. This in turn imparts the possibility to per-
form certain computational tasks and quantum simulations that are outside the reach of mod-
ern supercomputers (1, 2). Superconducting qubits—collective excitations in superconducting
circuits—are currently one of the leading approaches for realizing quantum logic elements and
quantum coherent interactions with suf!ciently high controllability and low noise to be a viable
candidate for implementing medium- and large-scale quantum computation.

In 2014, the !rst controlled qubit–qubit interaction with !delities greater than 0.99 in multi-
qubit systems was demonstrated (3) with the transmon qubit (4) variant of superconducting qubits,
and since then, multiple controlled two-qubit interactions have been demonstrated with similarly
high !delities (see, e.g., 5, 6). Even though the two-qubit gate !delity in multiqubit systems is
a limited metric for evaluating the maturity of a quantum computing technology, it implies a
high degree of control of all aspects of the quantum processor and indicates the state of play:
Superconducting qubits are well positioned to be a platform for demonstrating interesting noisy
intermediate-scale quantum (NISQ) computing (7) protocols outside the reach of classical com-
puters and !rst realizations of operations on multiple logical error-corrected qubits (8, 9).

In Figure 1, we show two major tracks being pursued in parallel in the community. The left
track (see, e.g., 9, 10) shows the progression toward building a fault-tolerant quantum computer,
capable of running an arbitrarily long computation, to arbitrary precision. Since 2012–2013, the
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Figure 1
Path toward fault-tolerant, quantum error–corrected quantum computers (left) as well as NISQ computing (right) using
superconducting qubits. The left track follows the path toward quantum computers capable of performing arbitrarily long programs to
arbitrary precision, based on logical (i.e., encoded and error-corrected) qubits. The right track is the NISQ approach (see Reference 7),
where highly optimized quantum algorithms and quantum simulations, which typically take into account details of the quantum
processor, can be executed without generalized quantum error correction procedures. The two tracks are pursued in parallel in many
academic, government, and industrial laboratories. Abbreviation: NISQ, noisy intermediate-scale quantum.
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Superconducting quantum computing: Where are we going?

MK et al, Ann. Rev. Cond. Matt. 11, 369-395, (2020)
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1. INTRODUCTION
The ability to control individual quantum degrees of freedom and their interactions unlocks the
capability to perform quantum coherent computation. This in turn imparts the possibility to per-
form certain computational tasks and quantum simulations that are outside the reach of mod-
ern supercomputers (1, 2). Superconducting qubits—collective excitations in superconducting
circuits—are currently one of the leading approaches for realizing quantum logic elements and
quantum coherent interactions with suf!ciently high controllability and low noise to be a viable
candidate for implementing medium- and large-scale quantum computation.

In 2014, the !rst controlled qubit–qubit interaction with !delities greater than 0.99 in multi-
qubit systems was demonstrated (3) with the transmon qubit (4) variant of superconducting qubits,
and since then, multiple controlled two-qubit interactions have been demonstrated with similarly
high !delities (see, e.g., 5, 6). Even though the two-qubit gate !delity in multiqubit systems is
a limited metric for evaluating the maturity of a quantum computing technology, it implies a
high degree of control of all aspects of the quantum processor and indicates the state of play:
Superconducting qubits are well positioned to be a platform for demonstrating interesting noisy
intermediate-scale quantum (NISQ) computing (7) protocols outside the reach of classical com-
puters and !rst realizations of operations on multiple logical error-corrected qubits (8, 9).

In Figure 1, we show two major tracks being pursued in parallel in the community. The left
track (see, e.g., 9, 10) shows the progression toward building a fault-tolerant quantum computer,
capable of running an arbitrarily long computation, to arbitrary precision. Since 2012–2013, the
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Figure 1
Path toward fault-tolerant, quantum error–corrected quantum computers (left) as well as NISQ computing (right) using
superconducting qubits. The left track follows the path toward quantum computers capable of performing arbitrarily long programs to
arbitrary precision, based on logical (i.e., encoded and error-corrected) qubits. The right track is the NISQ approach (see Reference 7),
where highly optimized quantum algorithms and quantum simulations, which typically take into account details of the quantum
processor, can be executed without generalized quantum error correction procedures. The two tracks are pursued in parallel in many
academic, government, and industrial laboratories. Abbreviation: NISQ, noisy intermediate-scale quantum.
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Purcell effect: Qubit
decay into a nearby
oscillator mode; in the
absence of a Purcell
!lter, !p ≈ (g/")2κ

Table 1 State-of-the-art high-!delity, two-qubit gates in superconducting qubitsa

Acronymb Layoutc First demonstration [Year] Highest !delity [Year] Gate time

CZ (ad.) T–T DiCarlo et al. (72) [2009]
99.4%e Barends et al. (3) [2014] 40 ns
99.7%e Kjaergaard et al. (73) [2020] 60 ns

√
iSWAP T–T Neeley et al. (81)d [2010] 90%g Dewes et al. (74) [2014] 31 ns

CR F–F Chow et al. (75)h [2011] 99.1%e Sheldon et al. (5) [2016] 160 ns
√
bSWAP F–F Poletto et al. (76) [2012] 86%g Poletto et al. (76) [2012] 800 ns

MAP F–F Chow et al. (77) [2013] 87.2%g Chow et al. (75) [2011] 510 ns
CZ (ad.) T–(T)–T Chen et al. (55) [2014] 99.0%e Chen et al. (55) [2014] 30 ns
RIP 3D F Paik et al. (78) [2016] 98.5%e Paik et al. (78) [2016] 413 ns
√
iSWAP F–(T)–F McKay et al. (79) [2016] 98.2%e McKay et al. (79) [2016] 183 ns

CZ (ad.) T–F Caldwell et al. (80) [2018] 99.2%e Hong et al. (6) [2019] 176 ns
CNOTL BEQ-BEQ Rosenblum et al. (13) [2018] ∼99%f Rosenblum et al. (13) [2018] 190 ns
CNOTT-L BEQ-BEQ Chou et al. (82) [2018] 79%g Chou et al. (82) [2018] 4.6 µs

aGates ordered by year of !rst demonstration. Gate time is for the highest-!delity gate.
bFull names: CZ (ad.), adiabatic-controlled phase;

√
iSWAP, square root of the iSWAP; CR, cross-resonance;

√
bSWAP, square root of the Bell–Rabi

SWAP; MAP, microwave-activated phase; RIP, resonator-induced phase gate; CNOTL, logical CNOT; CNOTT-L, teleported logical CNOT.
cF, !xed frequency; T, tunable; 3D F, !xed-frequency transmon qubit in a three-dimensional cavity; BEQ, bosonic-encoded qubit (see Section 2.4). For all
nonbosonic-encoded qubit gates, the qubits were of the transmon variety (except for the !rst demonstration of

√
iSWAP, using phase qubits, and the !rst

demonstration of CR, which used capacitively shunted "ux qubits). Terms in parentheses are a coupling element.
dImplemented with phase qubits.
eDetermined by interleaved randomized Clifford benchmarking (70).
fDetermined by repeated application of the gate to various input states and observing state !delity decay as function of applied gates. See Reference 13 for
details.
gDetermined by quantum process tomography.
hImplemented with capacitively shunted "ux qubits.

Gates implemented on "ux-tunable qubits.
Gates implemented using only microwave symbols.
Combination of tunable and !xed-frequency components.
Gates on bosonic-encoded qubits.

2.3. Ampli!cation and High-Fidelity Readout
An essential part of any superconducting quantum chip is fast and reliable readout of its qubit
states. For superconducting qubits, readout is typically done using dispersive readout, in which
each qubit is entangled with photons in a linear readout resonator with frequency ωr (83, 84).

In the dispersive regime, when the qubit-resonator detuning" = ωq − ωr is much larger than
their coupling rate g, no direct exchange of energy takes place between the two systems. Instead,
the qubit and resonator shift each others’ frequencies—proportional to their photon occupations,
g, and "—enabling the readout of the qubit state by probing the microwave response of the res-
onator. Depending on the state of the qubit, the readout resonance shifts by the dispersive shift χ .
For a two-level system,χ is given by g2/", and for the transmon qubitχ is modi!ed to g2

"
α

α+" (valid
in the transmon regime, where α = −Ec; see Reference 4). For ef!cient readout, the line width of
the resonator (κ) is designed to be similar to χ , typically in the range of a fewmegahertz. Although
an increased κ decreases the resonator ring-up time and thereby provides fast qubit-state readout,
the coherence time of the qubit is increasingly limited by spontaneous energy decay into the read-
out cavity mode, referred to as the Purcell effect (38). To mitigate this, the community is using
so-called Purcell !lters, which essentially act as bandpass !lters, that support strong interactions
between the resonator and an output line while protecting the qubit from energy decay (85).
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‘Fidelity’ is approximately the ‘quality’ of the quantum operation that generates 

entanglement in the quantum processor. Key metric.

‘Lifetime’ is approximately the time for which the qubit  
‘retains its memory’. Key metric.
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1. INTRODUCTION
The ability to control individual quantum degrees of freedom and their interactions unlocks the
capability to perform quantum coherent computation. This in turn imparts the possibility to per-
form certain computational tasks and quantum simulations that are outside the reach of mod-
ern supercomputers (1, 2). Superconducting qubits—collective excitations in superconducting
circuits—are currently one of the leading approaches for realizing quantum logic elements and
quantum coherent interactions with suf!ciently high controllability and low noise to be a viable
candidate for implementing medium- and large-scale quantum computation.

In 2014, the !rst controlled qubit–qubit interaction with !delities greater than 0.99 in multi-
qubit systems was demonstrated (3) with the transmon qubit (4) variant of superconducting qubits,
and since then, multiple controlled two-qubit interactions have been demonstrated with similarly
high !delities (see, e.g., 5, 6). Even though the two-qubit gate !delity in multiqubit systems is
a limited metric for evaluating the maturity of a quantum computing technology, it implies a
high degree of control of all aspects of the quantum processor and indicates the state of play:
Superconducting qubits are well positioned to be a platform for demonstrating interesting noisy
intermediate-scale quantum (NISQ) computing (7) protocols outside the reach of classical com-
puters and !rst realizations of operations on multiple logical error-corrected qubits (8, 9).

In Figure 1, we show two major tracks being pursued in parallel in the community. The left
track (see, e.g., 9, 10) shows the progression toward building a fault-tolerant quantum computer,
capable of running an arbitrarily long computation, to arbitrary precision. Since 2012–2013, the
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Figure 1
Path toward fault-tolerant, quantum error–corrected quantum computers (left) as well as NISQ computing (right) using
superconducting qubits. The left track follows the path toward quantum computers capable of performing arbitrarily long programs to
arbitrary precision, based on logical (i.e., encoded and error-corrected) qubits. The right track is the NISQ approach (see Reference 7),
where highly optimized quantum algorithms and quantum simulations, which typically take into account details of the quantum
processor, can be executed without generalized quantum error correction procedures. The two tracks are pursued in parallel in many
academic, government, and industrial laboratories. Abbreviation: NISQ, noisy intermediate-scale quantum.
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1. INTRODUCTION
The ability to control individual quantum degrees of freedom and their interactions unlocks the
capability to perform quantum coherent computation. This in turn imparts the possibility to per-
form certain computational tasks and quantum simulations that are outside the reach of mod-
ern supercomputers (1, 2). Superconducting qubits—collective excitations in superconducting
circuits—are currently one of the leading approaches for realizing quantum logic elements and
quantum coherent interactions with suf!ciently high controllability and low noise to be a viable
candidate for implementing medium- and large-scale quantum computation.

In 2014, the !rst controlled qubit–qubit interaction with !delities greater than 0.99 in multi-
qubit systems was demonstrated (3) with the transmon qubit (4) variant of superconducting qubits,
and since then, multiple controlled two-qubit interactions have been demonstrated with similarly
high !delities (see, e.g., 5, 6). Even though the two-qubit gate !delity in multiqubit systems is
a limited metric for evaluating the maturity of a quantum computing technology, it implies a
high degree of control of all aspects of the quantum processor and indicates the state of play:
Superconducting qubits are well positioned to be a platform for demonstrating interesting noisy
intermediate-scale quantum (NISQ) computing (7) protocols outside the reach of classical com-
puters and !rst realizations of operations on multiple logical error-corrected qubits (8, 9).

In Figure 1, we show two major tracks being pursued in parallel in the community. The left
track (see, e.g., 9, 10) shows the progression toward building a fault-tolerant quantum computer,
capable of running an arbitrarily long computation, to arbitrary precision. Since 2012–2013, the
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Figure 1
Path toward fault-tolerant, quantum error–corrected quantum computers (left) as well as NISQ computing (right) using
superconducting qubits. The left track follows the path toward quantum computers capable of performing arbitrarily long programs to
arbitrary precision, based on logical (i.e., encoded and error-corrected) qubits. The right track is the NISQ approach (see Reference 7),
where highly optimized quantum algorithms and quantum simulations, which typically take into account details of the quantum
processor, can be executed without generalized quantum error correction procedures. The two tracks are pursued in parallel in many
academic, government, and industrial laboratories. Abbreviation: NISQ, noisy intermediate-scale quantum.
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ancilla relaxation during the subsequent ancilla state measurement 
(Fig. 2d and Supplementary Section 7). The measurement outcome 
determines which (if any) type of ancilla error occurred, as well as 
the operation effected on the cavity state.

We ensure protection against ancilla dephasing during the 
SNAP operation by simultaneously driving the ancilla to fj i

I
 with 

equal rates Ω for all photon number states in the logical subspace. 
Because the control drives have photon-number-dependent phases, 
the ancilla becomes entangled with the logical system. However, 
in the limit of driving slowly compared to the dispersive coupling, 
the ancilla population remains uncorrelated with the logical state 
during the driven evolution (Supplementary Section 5). Therefore, 
projecting the ancilla to gj i

I
 or fj i

I
 at any time during the protocol, 

as the environment does in the case of dephasing, does not impart 
any back-action on the logical state. However, dephasing events will 
create some probability of not successfully finishing the transit from 
gj i
I

 to fj i
I

. By considering the effective Hamiltonian in the interac-
tion picture during the operation (Supplementary Section 1)

Hint ¼ Ω SðθÞ $ fj i gh jþΩ& Sð'θÞ $ gj i fh j ð1Þ

we can see that the logical action associated with going from gj i
I

 
to fj i

I
 is the desired gate S(θ), whereas the logical action of going 

from fj i
I

 to gj i
I

 is the inverse operation S(−θ). As a result, if the 
ancilla trajectory ends in gj i

I
 ( fj i
I

 following the final swap) due to a 
dephasing event, the net effect on the logical system is the identity 
operation. Remarkably, this path independence ensures protection 
even against multiple dephasing events. We can ensure determinis-
tic application of the gate in the presence of dephasing by resetting 
the ancilla and repeating the protocol upon measuring fj i

I
.

Energy relaxation during application of the gate occurs pre-
dominantly through decay from fj i

I
 to ej i

I
. The latter state remains 

unaffected under the action of the control drives, and therefore 
the final state should be detected as ej i

I
, assuming no further decay 

events. Because the trajectory taking the ancilla from gj i
I

 to ej i
I

 
passes through fj i

I
 (Fig. 1), the effective operation on the logical 

system is S(θ). However, the cavity state will also acquire a ran-
dom phase-space rotation (depending on the jump time) due to 
the static cavity–ancilla interaction χfe fj i fh jaya

I
, where a†a is the 

photon-number operator and χfe the dispersive interaction rate in 
fj i
I

 in a frame rotating with ej i
I

. This random rotation can be under-
stood as the back-action induced by the emitted ancilla excitation 
carrying photon-number-dependent energy. By using the detuned 
sideband driving scheme presented in ref. 13, we can effectively set 
χfe = 0 for the duration of the gate (Supplementary Section 6). This 
‘error-transparency’ drive eliminates the random rotation imparted 
on the cavity state, thereby maintaining path independence in the 
case of relaxation.

In addition to ancilla errors, the protocol is compatible with QEC 
protecting against photon loss in the cavity. Because the control 
drives do not act on the system in the odd photon number subspace, 
the result is equivalent to incomplete driving followed by photon 
loss. Although not done in this work, applying a parity measure-
ment13,29 and recovery operation26 following the protocol would 
make the effect of photon loss equivalent to that of ancilla dephas-
ing (Supplementary Section 3).

The key feature here is that, regardless of the measured ancilla 
state, the cavity remains in a definite pure state contained within 
the logical subspace. To demonstrate this, we create30 the state 
þXj iL ¼ 1ffiffi

2
p ð 0j iL þ 1j iLÞ

I
, apply the operation S(π/2) and per-

form Wigner tomography (Fig. 2c). In this experiment, the 
error-transparency drive is applied and the ancilla is measured 
without conditional repetition of the gate. The Wigner functions are 
shown separately for each measured ancilla state. To emphasize the 
effect of ancilla errors, we increase the ancilla error probability dur-
ing this operation (Supplementary Section 4), so that the probabili-
ties of relaxation and dephasing errors are ~20% each. As expected, 
in the case of successful completion of the protocol (ancilla in 
gj i
I

), or in the case of relaxation (ancilla in ej i
I

), the gate is correctly 
applied. Different deterministic phase-space rotations are acquired 
by the cavity for different final ancilla states as a result of evolu-
tion during the ancilla measurement. This angle can be corrected 
in software by updating the phase of subsequent drives around the 
cavity resonance frequency. Finally, in the case of ancilla dephasing 
(ancilla in fj i

I
), we observe the initial logical state þXj iL

I
. The slight 

asymmetry is a result of the Kerr evolution, whose removal requires 
successful completion of the logical gate28.

We next perform two versions of the full gate, the standard 
(non-corrected) gate SNC and the error-corrected gate SC (Fig. 2d),  
again with increased ancilla error rates. We characterize the result 
via Wigner tomography without conditioning on the ancilla 
measurement outcome (Fig. 2e). In the case of the standard gate 
(SNC), we observe significant smearing of the final state. However, 
in the case of the error-corrected gate (SC), which includes the 
error-transparency drive, ancilla measurement, reset and condi-
tional repetition, it is evident that, despite the high ancilla error rate, 
the cavity coherence is mostly preserved.

To establish the gate’s logical error probability quantitatively, we 
turn to interleaved randomized benchmarking (IRB)31. We first cre-
ate a set of operations from the logical Clifford group using numeri-
cal optimal control30. We then interleave the S(π/2) gate between 
randomly selected Clifford operations, scanning the length of the 
sequence (Fig. 3a). We measure the probability of obtaining the 
correct answer in the ancilla after applying a decoding operation 
as a function of the sequence length n (Fig. 3b), and compare the 
performance of SNC and SC. The measured gate error probability for 

Dephasing

Relaxation

XLYL

No error

Ancilla
event

Logical
operation

Ancilla
state

Start

Repeat

S (θ)

S (–θ)

S (θ)

S (θ)

∣g〉

∣e〉

∣f 〉
lL

lL

lL

lLlL

θ

θ

Fig. 1 | Working principle of the error-corrected logical gate. Control 
drives excite the ancilla from the ground state gj i

I
 to the second excited 

state fj i
I

 around an axis eiϕ fj i gh jþ e"iϕ gj i fh j
I

 with ϕ!=!θ for the logical state 
1j iL
I

 and ϕ!=!0 for 0j iL
I

. This implements the gate S(θ) (green arrows), 
which represents a ZL rotation by an angle θ on the logical system (boxes). 
Path independence requires that all closed loops in the ancilla transition 
graph produce the identity operation on the logical qubit, implying that the 
logical operation is uniquely determined by a measurement of the ancilla 
state (Supplementary Section 2). A rapid, unconditional gf swap (shown in 
Fig. 2d) is applied before the measurement to minimize the probability of 
ancilla relaxation during the measurement. Error transparency guarantees 
that the logical operation associated with the dominant decoherence 
events (ancilla relaxation and dephasing, depicted by blue and dark red 
arrows) is the identity IL. The operation succeeds in the case of either no 
error or relaxation. In the case of dephasing, the operation is not applied, 
but repeating the protocol makes the gate succeed deterministically. 
Relaxation from ej i

I
 to gj i

I
, shown with a faint arrow, breaks path 

independence, as well as error transparency, but is a low-probability 
second-order error.
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gates34,35 and therefore providing universal fault-tolerant control, is 
a promising path towards robust quantum computing devices.
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Clifford group, CðiÞ

L
I

. In the interleaved variants, after each random Clifford, we apply the logical gate (dashed box), either using the non-error-corrected 
(SNC) or error-corrected (SC) protocol. Finally, the net inverse Clifford operation is applied, followed by a decoding operation Udec. This maps the encoded 
information onto the ancilla, where it can be measured. b, By fitting both the RB and IRB results to an exponential model Ae!γn þ 1

2
I

 (dotted lines), we can 
learn the effective gate error probability. Without interleaved logical gates, we measure γRB!=!2.5!±!0.1% (black). We can determine the error probability 
associated with the error-corrected (non-error-corrected) operation as γIRB!−!γRB!=!2.4!±!0.1% (4.6!±!0.1%) from the red (blue) curve. c, To demonstrate 
the robustness of the protocol, we add noise to the system (Supplementary Section 4), which has the effect of increasing either the ancilla dephasing 
(left) or relaxation rates (right). We measure the ancilla population (top) and IRB-inferred error probabilities (bottom). We see that the populations are 
affected nearly independently by the respective noise parameters. We also see that, in both cases, SC (red markers) is significantly less likely than SNC 
(blue markers) to translate ancilla errors induced by the added noise into logical errors. The dotted lines are derived from a full quantum simulation using 
independently measured system parameters. Error bars indicate standard deviations.
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FIG. 2. Static and VQE performance on hydrogen chains. Binding curve simulations for H6, H8, H10, and H12 with
various forms of error mitigation. Subfigures (a, d, e, f) compare Sycamore’s raw performance (yellow diamonds) with post-
selection (green squares), purification (blue circles), and error mitigated combined with variational relaxation (red triangles).
For all hydrogen systems the raw data at 0.5 Å bond length is o↵ the top of the plot. The yellow, green, and blue points
were calculated using the optimal basis rotation angles computed from a classical simulation; thus, the variational optimization
shown here is only used to correct systematic errors in the circuit realization. Subfigure (b) contains the absolute error and
infidelity for the H6 system. For all points we calculated a fidelity witness described in Appendix D. The error bars for all points
were computed by estimating the covariance between simultaneously measured sets of 1-RDM elements and resampling those
elements under a multivariate Gaussian model. Energies from each sample were tabulated and the standard deviation is used
as the error bar. The “+PS” means applying post-selection to the raw data, “+Purification” means applying post-selection
and McWeeny purification, and “+VQE” means post-selection, McWeeny purification, and variational relaxation. Subfigure
(c) contains optimization traces for three H6 geometries (bond distances of 0.5 Å, 1.3 Å, and 2.1 Å). All optimization runs used
between 18 and 30 iterations. The lowest energy solution from the optimization trace was reported.

ther motivation was to implement the largest variational
quantum simulation of chemistry so that it is possible
to better quantify the current gap between the capabili-
ties of NISQ devices and real applications. Even though
the Hartree-Fock ansatz is e�cient to simulate classi-
cally, the circuits in our experiment are far more complex
than prior experimental quantum simulations of chem-
istry. Finally, the structure of the Hartree-Fock state
enabled us to sample the energy and gradients of the
variational ansatz with fewer measurements than would
typically be required, allowing us to focus on other as-
pects of quantum simulating chemistry at scale, such
as the e↵ectiveness of various types of error-mitigation.
Thus, our choice to focus on Hartree-Fock for this exper-
iment embraces the notion that we should work towards
valuable quantum simulations of chemistry by first scal-
ing up important components of the exact solution (e.g.,
error-mitigation strategies and basis rotations) in a fash-
ion that enables us to completely understand and perfect
those primitives.

Variational algorithms are specified in the form of a
functional minimization. This minimization has three

main components: ansatz specification in the form of a
parameterized quantum circuit (the function), observable
estimation (the functional), and outer-loop optimization
(the minimization). Each component is distinctively af-
fected by our choice to simulate a model corresponding
to non-interacting fermion wavefunctions. Symmetries
built into this ansatz allowed for reduction of the num-
ber of qubits required to simulate molecular systems, a
reduction in the number of measurements needed to es-
timate the energy, and access to the gradient without
additional measurements beyond those required for en-
ergy estimation. See Appendix A for details on how we
realized Hartree-Fock with VQE.
The unitary in Eq. (2) can be compiled exactly (with-

out Trotterization) using a procedure based on Givens
rotations. This strategy was first suggested for quan-
tum computing in work on linear optics in [26] and later
in the context of fermionic simulations in [27]. Here,
we implemented these basis rotations using the optimal
compilation of [28] that has gate depth N/2 and requires
only ⌘(N � ⌘) two qubit “Givens rotation” gates on a
linearly connected architecture, giving one rotation for
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FIG. 1. Basis rotation circuit and compilation. a) To
the left of the circuit diagram are the initial orbitals for the
H12 chain with atom spacings of 1.3 Å, obtained by diago-
nalizing the Hamiltonian ignoring electron-electron interac-
tions. The circuit diagram depicts the basis rotation ansatz
for a linear chain of twelve hydrogen atoms. Each grey box
with a rotation angle ✓ represents a Givens rotation gate. b)
Compilation of the Givens rotation gate to

p
iswap gates and

single-qubit gates that can be realized directly in hardware.
The H12 circuit involves 72

p
iswap gates and 108 single-qubit

Z rotation gates with a total of 36 variational parameters. c)
Depiction of a twelve qubit line on a subgrid of the entire
54-qubit Sycamore device. All circuits only require gates be-
tween pairs of qubits which are adjacent in a linear topology.

interacting fermion dynamics from a computational basis
state |⌘i = a†⌘ · · · a

†
1
|0i in the core orbital basis:

| i = U |⌘i , U = exp

 
NX

p,q=1

pqa
†
paq

!
. (2)

Such states are referred to as Slater determinants.
To complete the accurate preparation of Hartree-Fock

states, we implemented variational relaxation of the 
parameters to minimize the energy of | i starting from
the optimal  determined by solving the Hartree-Fock
equations classically. This is an idealized implementa-
tion of VQE that allowed us to demonstrate error miti-
gation of coherent errors through variational relaxation.
We defined the Hartree-Fock state | HFi to be the lowest
energy Slater determinant for the molecular Hamiltonian
H, i.e.

| HFi = | ?i ? = argmin h |H | i . (3)

We applied U to |⌘i using our quantum computer and
then performed the optimization over  through feed-
back from a classical optimization routine. The energy
decreased because the initial core orbitals were obtained
by ignoring the electron-electron interaction and varia-
tional relaxation compensates for coherent errors. Since

the generator for U corresponds to a non-interacting
fermion Hamiltonian, its action on a product state in sec-
ond quantization can be classically simulated in O(N3)
by diagonalizing the one-body operator and in some cases
the Hartree-Fock procedure can be made to converge
with even lower complexity. Despite that fact, we ar-
gue that this procedure is still a compelling experiment
for a quantum computer.

The Hartree-Fock state is usually the initial state for
classical correlated electronic structure calculations such
as coupled cluster and configuration interaction methods,
as well as for many quantum algorithms for chemistry.
Thus, often one chooses to work in the molecular orbital
basis, which is defined so that the Hartree-Fock state
is a computational basis state. However, the molecular
orbital basis Hamiltonian has a large number of terms
which can be challenging to simulate and measure with
low complexity. Accordingly, the most e�cient quan-
tum algorithms for chemistry [12–15] require that one
perform the simulation in more structured bases with
asymptotically fewer terms [16–18], necessitating that
U? is applied explicitly at the beginning of the com-
putation. Even when simulating chemistry in an arbi-
trary basis, the most e�cient strategies are based on a
tensor factorization of the Hamiltonian which requires
many applications of U to simulate [19, 20]. Exploiting
this tensor factorization with basis rotations is also key
to the most e�cient strategy for measuring hHi in vari-
ational algorithms, and requires implementing U prior
to measurement [21].

We used this variational ansatz based on basis rota-
tions to benchmark the Sycamore processor for linear
hydrogen chains of length 6, 8, 10, and 12 and two path-
ways for diazene bond isomerization. We modeled hy-
drogen chains of length N with N qubits. Our simula-
tions required N qubits to simulate 2N spin-orbitals due
to the constraint that the ↵-spin-orbitals have the same
spatial wavefunction as the �-spin-orbitals. For diazene
we required 10 qubits after pre-processing. The hydro-
gen chains are a common benchmark in electronic struc-
ture [22–24] and the diazene bond isomerization provides
a system where the required accuracy is more representa-
tive of typical electronic structure problems and has been
used as a benchmark for coupled cluster methods [25].
For the diazene isomerization our goal was to resolve the
energetic di↵erence between the transition states of two
competing mechanisms, requiring accuracy of about 40
milliHartree. This objective di↵ers from prior quantum
simulations of chemistry which have focused on bond dis-
sociation curves [4–7].

One motivation for this work was to calibrate and val-
idate the performance of our device in realizing an im-
portant algorithmic primitive for quantum chemistry and
lattice model simulation. Our experiment was also ap-
pealing for benchmarking purposes since the circuits we
explored generated highly entangled states but with spe-
cial structure that enabled the e�cient measurement of
fidelity and the determination of systematic errors. Fur-
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
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circuit data, not simulated but archived, is expected to show similarly 
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sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.
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FIG. 5. Repeated quantum error detection. The expectation
values of (a) the logical ZL operator and (b) the logical XL

operator as a function of N , the number of stabilizer mea-
surement cycles. The expectations values are shown for the
prepared |0iL (blue), |1iL (green), |+iL (brown) and |�iL
(purple) states. The solid lines indicate the corresponding
values obtained from master equation simulations. Also shown
(dashed lines, right axis) are the (a) qubit decay of the |1i-
state with the best measured T1 value and (b) the physical
qubit decay of the |+i-state with the best measured T2 value.
(c) Total success probability ps for detecting no errors during
N cycles of stabilizer measurements for the |0iL data shown
in (a) and the corresponding values from numerical simula-
tions. (d) Probability of observing k ancilla qubits in the |1i
state for each measurement cycle and conditioned on having
detected no error in any of the previous N�1 cycles. The data
corresponds to the initial |0iL state presented in (a).

error probability of 3.1%± 0.45% and a logical ZL error
probability of 2.6± 1.3%.

Generally, we find good agreement between the mea-
sured expectation values of the logical qubit operators
and the ones calculated using numerical simulations, solid
lines in Fig. 5(a,b), accounting for finite physical qubit
life- (T1) and coherence times (T2), residual-ZZ coupling
and readout errors, see Appendix E for details. From

the numerical simulations, we extract logical decay times
of 44.2 µs and 59.6 µs for ZL and XL operators when
no errors are detected, which are smaller than the exper-
imentally obtained times, but within the experimental
error bars. The simulated decay times correspond to a
logical XL error probability of 4.2% and a logical ZL

error probability of 3.1% per error detection cycle. We
suspect that for the |+iL-state coherent errors from qubit
frequency drifts during the data collection cause the devi-
ations between data and simulations.

Finally, we discuss the probability to observe k ancilla
qubits simultaneously in the |1i state per error detection
cycle when no errors were detected in previous cycles.
We find that the probability to observe no errors slowly
increases with N from about 40% to 50%, see Fig. 5(d).
From numerical simulations, we find that the probability
to observe no additional errors after one cycle is between
49.9% and 50.3% per cycle, slightly larger than the experi-
mentally observed values. We also observe experimentally
that the probability of detecting more than a single an-
cilla qubit in the |1i state per cycle is approximately
suppressed exponentially. Consistent with this analysis,
we find that the measured probability of not detecting an
error (blue data points) decreases exponentially with N ,
Fig. 5(c). After N = 10 cycles, the success probability,
i.e. the total probability that the state remained in the
code space, approaches 10�4, around a factor of 6 smaller
than the simulated value. The di↵erence between the
simulated (dashed line) and experimentally determined
success probabilities stems from the smaller simulated
error probability per cycle discussed above.

DISCUSSION

In conclusion, we have implemented a seven qubit sur-
face code for repeated quantum error detection. In partic-
ular, our experiment was enabled by fast and low-crosstalk
readout for ancilla measurements. Using the seven qubit
surface code, we demonstrated preparation of the logical
states |0iL, |1iL, |+iL and |�iL with an average fidelity
in the logical subspace of 96.1%. The probability to be
within the logical subspace was found to be around 70%
due to the accumulated errors during the stabilizer mea-
surement cycle in good agreement with the corresponding
numerical simulations. When executing the quantum
error detection sequence for multiple cycles, we find an
extended lifetime and coherence time of the logical qubit
conditioned on detecting no errors. The data presented
here is postselected on the ancilla measurement outcomes
and on the condition that the final measurement of the
data qubits satisfies the stabilizer conditions of the code.
Crucially, since we found both extended logical life- and
coherence time, we verified that neither the syndrome
measurements nor the postselection extract information
about the logical quantum state. The techniques used
in this work for high-fidelity gates [36] and low-crosstalk
qubit readout [34] are directly applicable to a range of
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FIG. 1. Seven qubit surface code. (a) The surface code consists of a two-dimensional array of qubits. Here the data qubits
are shown in red an the ancilla qubits for measuring X-type (Z-type) stabilizers in blue (green). The smallest surface code
consists of seven qubits indicated by the data qubits D1-D4 and the ancilla qubits A1-A3. (b) Gate sequence for quantum error
detection using the seven qubit surface code. Details of the gate sequence are discussed in the main text.

Here, we use the following logical qubit operators

ZL = ZD1ZD2, or ZL = ZD3ZD4, (2)

XL = XD1XD3, or XL = XD2XD4, (3)

such that the code space in terms of the physical qubit
states is spanned by the logical qubit states

|0iL =
1p
2
(|0000i+ |1111i), (4)

|1iL =
1p
2
(|0101i+ |1010i). (5)

To encode quantum information in the logical subspace,
we initialize the data qubits in a separable state, chosen
such that after a single cycle of stabilizer measurements
and conditioned on ancilla measurement outcomes being
|0i, the data qubits are encoded into the target logical
qubit state. In this work, we demonstrate this probabilis-
tic preparation scheme for the logical states |0iL, |1iL,
|+iL = (|0iL + |1iL)/

p
2 and |�iL = (|0iL � |1iL)/

p
2

and we perform repeated error detection on these states.

IMPLEMENTATION

The seven qubit surface code, as discussed above, can
be realized with a set of qubits laid out as depicted in
Fig. 1(a). The logical qubit is encoded into four data
qubits, D1-D4, and three ancilla qubits, A1, A2 and
A3 are used to measure the three stabilizers ZD1ZD3,
XD1XD2XD3XD4 and ZD2ZD4, respectively. We initially
herald all qubits in the |0i-state [38, 39] and subsequently
prepare the data qubits in a product state using single
qubit rotations around the y-axis. These initial states
are then projected onto the code space after the initial
stabilizer measurement cycles.
We perform the XD1XD2XD3XD4 stabilizer measure-

ment by first applying basis change pulses (R⇡/2
Y ) on the

data qubits to map the X basis to the Z basis. Then we
perform the entangling gates as in Fig. 1(b) and finally
we revert the basis change. The measurement of A2 will
therefore yield the |0i-state (|1i-state) corresponding to
the eigenvalue +1 (�1) of the stabilizerXD1XD2XD3XD4.
While the measurement pulse for A2 is still being applied,
we perform the ZD1ZD3 and ZD2ZD4 stabilizer measure-
ments simultaneously using the ancilla qubits A1 and
A3, respectively. To avoid unwanted interactions dur-
ing entangling gate operations, we operate the surface
code using a pipelined approach similar to the scheme
introduced by Versluis et.al. [37], for which we perform
X-type and Z-type stabilizer measurements sequentially,
see Fig. 1(b) and Appendix A. The cycle is repeated after
this step, and, after N stabilizer measurement cycles, we
perform state tomography of the data qubits.
The gate sequence described above is implemented on

the seven qubit superconducting quantum device shown
in Fig. 2(a), see Appendix B for device parameters. Each
qubit (yellow) is a single-island transmon qubit [40] and
features an individual flux line (green) for frequency tun-
ing and an individual charge line (pink) for single qubit
gates. Additionally, each qubit is coupled to a readout
resonator (red) combined with an individual Purcell filter
(blue). The Purcell filters protect against qubit decay into
the readout circuit [41] and suppress readout crosstalk
such that multiplexed ancilla measurements can be per-
formed without detrimental e↵ects on the data qubits [34].
Each Purcell filter is coupled to a feedline and we per-
form all measurements by probing each feedline with a
frequency-multiplexed readout pulse [34], see Appendix C
for a complete characterization of the readout. The qubits
are coupled to each other via 1.5 mm long coplanar waveg-
uide segments (cyan) as displayed in Fig. 1(a). The seven
qubit surface code requires the central ancilla qubit to
connect to four neighbors. The qubit island shape, shown
Fig. 2(b), is designed to facilitate coupling to a read-
out resonator and four two-qubit couplers. To ensure a
closed ground plane around the qubit island, each cou-

mailto:mkjaergaard@nbi.ku.dk


Morten Kjaergaard

mkjaergaard@nbi.ku.dk 

DQC Conference

Oct 7th, 2020Quantum computing: A new programming paradigm

DATA

INSTRUCTIONS

“CODE <=> DATA”
Homoiconicity

Programming a quantum computer with quantum instructions 
MK et al, arXiv:2001.08838

mailto:mkjaergaard@nbi.ku.dk


Morten Kjaergaard

mkjaergaard@nbi.ku.dk 

DQC Conference

Oct 7th, 2020

?

Restoring programming parity to quantum computers

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

Instruction 
set

Quantum computingClassical computing

Classical instruction set for
quantum computing

Classical instruction set for
classical computing

Quantum instruction set for
quantum computing

Control
layer

Algorithm e-iH(0110)tšš U e-iH(110...)tšš U

0110 1101100100110...

...

f = 00011011011...

f =

011110... f

...

Ś
Ś
Ś

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

e-i   ѡšš DMEN
Ś

1 e-i   ѡšš DMEN
Ś

n

Single-qubit Multi-qubit Single-qubit Multi-qubit 

1 n

1

1

1

Ś
Ś
Ś

n

n

n

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

Instruction 
set

Quantum computingClassical computing

Classical instruction set for
quantum computing

Classical instruction set for
classical computing

Quantum instruction set for
quantum computing

Control
layer

Algorithm e-iH(0110)tšš U e-iH(110...)tšš U

0110 1101100100110...

...

f = 00011011011...

f =

011110... f

...

Ś
Ś
Ś

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

e-i   ѡšš DMEN
Ś

1 e-i   ѡšš DMEN
Ś

n

Single-qubit Multi-qubit Single-qubit Multi-qubit 

1 n

1

1

1

Ś
Ś
Ś

n

n

n

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

Instruction 
set

Quantum computingClassical computing

Classical instruction set for
quantum computing

Classical instruction set for
classical computing

Quantum instruction set for
quantum computing

Control
layer

Algorithm e-iH(0110)tšš U e-iH(110...)tšš U

0110 1101100100110...

...

f = 00011011011...

f =

011110... f

...

Ś
Ś
Ś

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

e-i   ѡšš DMEN
Ś

1 e-i   ѡšš DMEN
Ś

n

Single-qubit Multi-qubit Single-qubit Multi-qubit 

1 n

1

1

1

Ś
Ś
Ś

n

n

n

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

Instruction 
set

Quantum computingClassical computing

Classical instruction set for
quantum computing

Classical instruction set for
classical computing

Quantum instruction set for
quantum computing

Control
layer

Algorithm e-iH(0110)tšš U e-iH(110...)tšš U

0110 1101100100110...

...

f = 00011011011...

f =

011110... f

...

Ś
Ś
Ś

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

e-i   ѡšš DMEN
Ś

1 e-i   ѡšš DMEN
Ś

n

Single-qubit Multi-qubit Single-qubit Multi-qubit 

1 n

1

1

1

Ś
Ś
Ś

n

n

n
...δ

δ
δ

Density Matrix ExponentiationDensity Matrix Exponentiation

Instruction 
set

Quantum computingClassical computing

Classical instruction set for
quantum computing

Classical instruction set for
classical computing

Quantum instruction set for
quantum computing

Control
layer

Algorithm e-iH(0110)tšš U e-iH(110...)tšš U

0110 1101100100110...

...

f = 00011011011...

f =

011110... f

...

Ś
Ś
Ś

...δ
δ

δ

Density Matrix ExponentiationDensity Matrix Exponentiation

e-i   ѡšš DMEN
Ś

1 e-i   ѡšš DMEN
Ś

n

Single-qubit Multi-qubit Single-qubit Multi-qubit 

1 n

1

1

1

Ś
Ś
Ś

n

n

n

“CODE <=> DATA”

Rest of this talk

CODE: CLASSICAL 
DATA: QUANTUM

CODE: QUANTUM 
DATA: QUANTUM

CODE: CLASSICAL 
DATA: CLASSICAL
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DME is a fixed protocol that implements an operation

only dependent on the setting of the instruction state ρ:

Seth Lloyd et al, Nat. Phys. 2014

DMEN

(θ an angle)

Conceptually 
Density Matrix Exponentiation allows us to load a program 


into a state (‘instruction state’ or ‘quantum program’, ρ) and execute

that quantum program on another quantum system
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Instruction

state

Number of steps

N

Total angle

θ

ʜ (ʌ /2)DME( , 4, ʌ /2 )Ŝ in = +y +y Ŝ in = +y +y+x +x ʜ (ʌ /2)DME( , 4, ʌ /2 )Ŝ in = +y +y Ŝ in = +y +y+x +x

mailto:mkjaergaard@nbi.ku.dk


Morten Kjaergaard

mkjaergaard@nbi.ku.dk 

DQC Conference

Oct 7th, 2020

Ŝ (n )

Ś Ś (n )

State
tomo

Target qubit:

Instruction qubit:

Ŝin

in

δ

= +y +y

+x +x=
δ

ʌ
2

4 
δ

SQMx SQMx

δ
SQMx SQMx

Programming with quantum states

x y z

Bl
oc

h 
pr

oj
ec

tio
n

1 2 3 40

1 2 3 40

Ŝ(n )

Ta
rg

et
 q

ub
it

In
st

ru
ct

io
n 

qu
bi

t

Ŝ(n )

Ś(n )

Number of substeps (n) 

-1

1

0

-1

1

0

Ś(n )

Bl
oc

h 
pr

oj
ec

tio
n

x y z

Bl
oc

h 
pr

oj
ec

tio
n

1 2 3 40

1 2 3 40

Ŝ(n )

Ta
rg

et
 q

ub
it

In
st

ru
ct

io
n 

qu
bi

t

Ŝ(n )

Ś(n )

Number of substeps (n) 

-1

1

0

-1

1

0

Ś(n )

Bl
oc

h 
pr

oj
ec

tio
n

x y z

Bl
oc

h 
pr

oj
ec

tio
n

1 2 3 40

1 2 3 40

Ŝ(n )

Ta
rg

et
 q

ub
it

In
st

ru
ct

io
n 

qu
bi

t

Ŝ(n )

Ś(n )

Number of substeps (n) 

-1

1

0

-1

1

0

Ś(n )

Bl
oc

h 
pr

oj
ec

tio
n

x y z

Bl
oc

h 
pr

oj
ec

tio
n

1 2 3 40

1 2 3 40

Ŝ(n )

Ta
rg

et
 q

ub
it

In
st

ru
ct

io
n 

qu
bi

t

Ŝ(n )

Ś(n )

Number of substeps (n) 

-1

1

0

-1

1

0

Ś(n )

Bl
oc

h 
pr

oj
ec

tio
n

x y z

Bl
oc

h 
pr

oj
ec

tio
n

1 2 3 40

1 2 3 40

Ŝ(n )

Ta
rg

et
 q

ub
it

In
st

ru
ct

io
n 

qu
bi

t

Ŝ(n )

Ś(n )

Number of substeps (n) 

-1

1

0

-1

1

0

Ś(n )

Bl
oc

h 
pr

oj
ec

tio
n

ʜ (ʌ /2)DME( , 4, ʌ /2 )Ŝ in = +y +y Ŝ in = +y +y+x +x ʜ (ʌ /2)DME( , 4, ʌ /2 )Ŝ in = +y +y Ŝ in = +y +y+x +x

Single qubit DME

Instruction state:                          :

Input to density matrix exponentiation:

The setting of the instruction qubit “instructs” 

axis to rotate the target qubit about 

Simulated Quantum Measurement Gate, A. Greene, MK, et al. (in preparation, 2020)
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DME is exceedingly efficient for generating quantum instructions

Exponential reduction in resource requirements over any tomographic strategy 
(Kimmel et al, npj QI 2017)

Algorithm runtime scales only logarithmically with dimension of instruction state

(Lloyd et al, Nat. Phys. 2014, Marvian & Lloyd (2016), Kimmel et al, npj QI 2017)

Quantum principal component analysis

Lloyd et al, Nat. Phys., 10 631 (2014) 

Efficient measurements of entanglement spectra

Pichler et al, PRX, 6 041033 (2016) 

Quantum semi-definite programming

Brandao et al, arXiv:1710.02581 (2017) Marvian & Lloyd, arXiv: 1606.02734 (2016) 

Universal quantum emulation

Sample optimal Hamiltonian simulation

Kimmel et al, npj QI, 3 13 (2017) 

‘Generalized LMR for simulation of Hermitian polynomials’,
we discuss the sample complexity of more complex Hamiltonians
that depend on multiple states. For example, we show how to
simulate the Hamiltonians given by any Hermitian polynomial (i.e.
any element of the Jordan–Lie algebra15) generated by states
ρ1,…, ρK to which we are given sample access. As applications of
this result, we show how to simulate the commutator i[ρ1, ρ2] and
anticommutator {ρ1, ρ2} of two states ρ1 and ρ2, and how to
simulate any real linear combination of states ρ1,…, ρK when given
access to many copies of those states. We prove the optimality of
the commutator, anticommutator, and linear combinations pro-
tocols. In ‘Applications of commutator simulation’, we give
applications of commutator simulation to orthogonality testing
and quantum state addition. In ‘Universality of LMR’, we show how
to use sample-based Hamiltonian simulation to implement a
universal model of quantum computation using only partial swaps
and a stream of input qubits initialized in |0〉 and |+〉.
In ‘Discussion’, we discuss the results and suggest open

problems. Finally, in ‘Methods’ we give proofs for two of the
main results in the paper: the lower bound on the LMR protocol,
and the protocol for simulating Hamiltonians given by Hermitian
polynomials of the input states.

Notation
We use H to denote a finite-dimensional Hilbert space, and DðHÞ
to represent the set of positive semi-definite operators with trace
1 on H (i.e. the set of valid quantum states).
The trace distance between ρ; σ 2 DðHÞ is given by 1

2 kρ# σk1,
where kAk1 :¼ Trð

ffiffiffiffiffiffiffiffi
AAy

p
Þ: The trace distance between ρ and σ

gives the maximum difference in probability of any measurement
on the two states.4 For two quantum channels E1 and E2 that act
on DðHÞ, their trace norm distance is defined as

1
2
k E1 # E2ktr :¼

1
2

max
ρ2DðHÞ

k E1ðρÞ # E2ðρÞk1 ð3Þ

The diamond norm distance is defined as

1
2
k E1 # E2k% :¼

1
2

max
k;ρ2DðH&HkÞ

kðE1 & IÞðρÞ # ðE2 & IÞðρÞk1 ð4Þ

where I is the identity channel on a k-dimensional spaceHk . Note
k E1 # E2k% 'k E1 # E2ktr.
We use 1A to mean the identity matrix acting on subsystem A,

but if clear from context, we will drop the subscript. We use
|+〉:=(|0〉+|1〉)/(2)1/2 and denote single-qubit Pauli operators as
X, Y, and Z.

RESULTS
LMR protocol vs. state tomography
Lloyd, Mohseni, and Rebentrost5 gave a simple method for
approximating the transformation in Eq. (2). The number of copies
of ρ required by their procedure is not only independent of σ and
ρ, but is independent of the dimension and rank of ρ. We state
their result in a slightly more general form, where σ has two
registers and e−iρt is applied only to one of them.

Theorem 1 (ref. 5). Let ρ 2 DðHAÞ and σ 2 DðHA &HBÞ be two
unknown quantum states and t 2 R (can be either positive or
negative). Then there exists a quantum algorithm that transforms
σAB & ρA1

& ( ( ( & ρAn
into ~σAB such that

1
2
kðe#iρAt & 1BÞσABðeiρAt & 1BÞ # ~σABk1 ) δ; ð5Þ

as long as the number of copies of ρ is n = O(t2/δ). In other words,
this quantum algorithm implements the unitary e−iρt up to error δ in
the diamond norm, using O(t2/δ) copies of ρ.

We will give a sketch of the proof because many of our more
general simulation techniques build on their ideas; for the full
proof see Supplementary Information Section A. For simplicity we
assume ρ and σ have the same dimension. Using a Taylor series
expansion, the target state is

e#iρtσeiρt ¼ σ # i½ρ; σ+t # 1
2!
½ρ; ½ρ; σ++t2 þ ( ( ( : ð6Þ

We note that for very small evolution times Δ, we have the
following direct calculation:

Tr2½e#iSΔðσ & ρÞeiSΔ+ ¼ σ # i½ρ; σ+Δþ OðΔ2Þ ð7Þ

¼ e#iρΔσeiρΔ þ OðΔ2Þ; ð8Þ

where by Tri we mean taking the partial trace of the ith subsystem,
and S is the swap operator between the two registers. If we take Δ
= δ/t and repeat this procedure O(t2/δ) times, we end up
implementing the operator e−iρt up to error O(Δ2 · t2/δ) =O(δ).
Thus the LMR protocol uses O(t2/δ) copies of ρ to implement

the unitary e−iρt up to error δ in trace norm. (While not noted
explicitly in ref. 5, the LMR protocol can be implemented
efficiently, i.e. using Oðlog D ( t2=δÞ single-qubit and Fredkin
(controlled-swap) gates, where D ¼ dimðHAÞ, by applying the
linear combination of unitaries algorithm (see, e.g., ref. 3 or ref. 16,
Theorem 2.4). For more information, see Supplementary Informa-
tion Section A). To obtain the result for the diamond norm, simply
replace σ by σAB and perform the partial swap operation e−iSΔ only
between the A registers of σAB and ρA, and then discard the last
register that was originally holding ρA.
Additionally, the LMR protocol can be modified to implement

the controlled-e−iρt operation, which will be important if one
wants to implement phase estimation on e−iρt. A method for
implementing controlled-e−iρt is stated without proof in ref. 5; we
prove this method works and provide an additional approach in
the Supplementary Information Section A.1.
An alternative method to LMR for sample-based Hamiltonian

simulation would be to perform tomography on the copies of ρ to
get an estimate ρ̂ of ρ, and then implement e#iρ̂t . In Supplemen-
tary Information Section B, we show that the number of samples
needed if using this strategy is

n ¼ Ω
Cdrðt # δÞ2

δ2 logðdt=rδÞ
þ t2

δ2

 !

; ð9Þ

where d is the dimension of ρ, r is the rank of ρ, and t and δ are as
in Theorem 1.
Comparing with Theorem 1, since LMR does not have any

dependence on d or r, we immediately see that for large d or r,
LMR does significantly better. Furthermore, even fixing d and r, we
see that LMR provides a square-root improvement in sample
complexity over tomography in terms of δ.

LMR protocol is optimal
To prove the LMR protocol is in fact asymptotically optimal, we
first give a lower bound on the sample complexity of distinguish-
ing two specific states. Next, we assume we have a protocol that
simulates e−iρt to trace norm (which is a weaker assumption than
using diamond norm) δ using f(t, δ) samples of ρ for some
function f. Then we show that using such a protocol one can
distinguish these two states. However, if f = o(t2/δ), we would
violate our lower bound on state discrimination.

Theorem 2 Let f(t, δ) be the number of copies of ρ required to
implement the unitary e−iρt up to error δ in trace norm. Then as long
as δ≤ 1/6 and δ/t≤ 1/(6π), it holds that f(t,δ) =Θ(t2/δ).

The proof of Theorem 2 can be found in ‘Discussion’. The proof
uses mixed states, so it could be possible that simulating

Sample complexity of Hamiltonian simulation
S Kimmel et al

2

npj Quantum Information (2017) �13� Published in partnership with The University of New South Wales
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Programming parity can be restored to quantum computing

using the Density Matrix Exponentiation algorithm

We demonstrated a proof of principle version

of this algorithm using superconducting qubits, and a 


novel gate construction for approximately resetting a known state

More details: www.arXiv.org/abs/2001.08838
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Want to study foundational problems and applications of superconducting qubits to quantum information processing? 
We are looking for students and postdocs! Let me know at mkjaergaard@nbi.ku.dk
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